
2/18/2019

1

Data Representation

Computer Science Department

Wednesday, February 11, 2015

Computer Science Department

Comp 132

Data Representation

Computer understand two things: on and off .

Data represented in binary form .

Bit is the basic unit for storing data 0off ,1on .

Byte is a group of 8 bits. That is, each byte has 256(28) possible values.

Two bytes form a word

2/18/2019

2

Text: ASCII
Characters

• ASCII: Maps 128
characters to 7-bit
code

UCS-2 (Universal Character Set - 2 Byte)

2/18/2019

3

Interesting Properties of ASCII Code
• What is relationship between a decimal digit ('0', '1', …)

and its ASCII code?

• What is the difference between an upper-case letter
('A', 'B', …) and its lower-case equivalent ('a', 'b', …)?

• Given two ASCII characters, how do we tell which comes
first in alphabetical order?

• Are 128 characters enough?
(http://www.unicode.org/)

Parity bit

• Used for error detection

• Two types: 1. Odd parity (number of 1’s are odd)

2. Even parity (number of 1’s are even)

2/18/2019

4

Characters Representation

Memory

Using the even parity bit to represent the character Q (Q = 81 in ASCII) in memory

(Hexadecimal) ?

(81)10=(01010001)2

D1

a=97Note: ASCII for A=65 and
American Standard Code for Information

Interchange

A=65

B=66

.

.

a=97

b=98

.

.

Characters Representation

Using the odd parity bit to represent your name in memory ?
A 01000001

h 01101000

m 01101101

..

2/18/2019

5

Integers Representation

Represent the following integer in memory using 2 byte?

92 ~ ‘\’

92 = 1011100

Answer

0000 0000 01011100

0 0 5 C

Integers Representation

Represent the following integer in memory using 2 byte?

-94

94 = 0000000001011110

1’s

2’s+

1111111110100010

F F A 2

11111111110100001

1

2/18/2019

6

Byte Order - Big and Little Endian
• Endian refers to the order in which bytes are stored.

• Little Endian: If the hardware is built so that the lowest, least
significant byte of a multi-byte scalar is stored "first", at the lowest
memory address.

• Big Endian: If the hardware is built so that the highest, most
significant byte of a multi-byte scalar is stored "first", at the lowest
memory address.

• Example: four-byte integer 0x44332211.

Memory Address
Big-Endian
byte value

Little-Endian
byte value

104 11 44

103 22 33

102 33 22

101 44 11

Floating Point Numbers

2/18/2019

7

Exponential Notation

The representations differ in that
the decimal place – the “point” --
“floats” to the left or right (with the
appropriate adjustment in the
exponent).

• The following are equivalent representations of 1,234

123,400.0 x 10-2

12,340.0 x 10-1

1,234.0 x 100

123.4 x 101

12.34 x 102

1.234 x 103

0.1234 x 104

Parts of a Floating Point Number

-0.9876 x 10-3

Sign of
mantissa

Location of
decimal point Mantissa

Exponent

Sign of
exponent

Base

2/18/2019

8

IEEE 754 Standard

• Most common standard for representing floating point numbers

• Single precision: 32 bits, consisting of...
• Sign bit (1 bit)

• Exponent (8 bits)

• Mantissa (23 bits)

• Double precision: 64 bits, consisting of…
• Sign bit (1 bit)

• Exponent (11 bits)

• Mantissa (52 bits)

Single Precision Format

32 bits

Mantissa (23 bits)

Exponent (8 bits)

Sign of mantissa (1 bit)

2/18/2019

9

Normalization

• The mantissa is normalized

• Has an implied decimal place on left

• Has an implied “1” on left of the decimal place

• E.g.,
• Mantissa 

• Represents…

10100000000000000000000

1.1012 = 1.62510

Excess Notation

• To include +ve and –ve exponents, “excess” notation is used

• Single precision: excess 127

• Double precision: excess 1023

• The value of the exponent stored is larger than the actual exponent

• E.g., excess 127,
• Exponent 

• Represents…
10000111

135 – 127 = 8

2/18/2019

10

Example 1:

• Single precision

Hexadecimal

• It is convenient and common to represent the original floating point
number in hexadecimal

• The preceding example…

2/18/2019

11

Example2: Converting from Floating Point

• E.g., What decimal value is represented by the following 32-bit
floating point number?

C17B000016

• Step 1
• Express in binary and find S, E, and M

C17B000016 =

1 10000010 111101100000000000000002

S E M

1 = negative
0 = positive

2/18/2019

12

• Step 2
• Find “real” exponent, n
• n = E – 127

= 100000102 – 127

= 130 – 127

= 3

• Step 3
• Put S, M, and n together to form binary result

• (Don’t forget the implied “1.” on the left of the mantissa.)

-1.11110112 x 2
n =

-1.11110112 x 2
3 =

-1111.10112

2/18/2019

13

• Step 4
• Express result in decimal

-1111.10112

-15
2-1 = 0.5

2-3 = 0.125

2-4 = 0.0625

0.6875

Answer: -15.6875

Example 3: Converting to Floating Point

• E.g., Express 36.562510 as a 32-bit floating point
number (in hexadecimal)

2/18/2019

14

• Step 1
• Express original value in binary

36.562510 =

100100.10012

• Step 2
• Normalize

100100.10012 =

1.0010010012 x 25

2/18/2019

15

• Step 3
• Determine S, E, and M

+1.0010010012 x 25

S = 0 (because the value is positive)

MS
n E = n + 127

= 5 + 127

= 132
= 100001002

• Step 4
• Put S, E, and M together to form 32-bit binary result

0 10000100 001001001000000000000002
S E M

2/18/2019

16

• Step 5
• Express in hexadecimal

0 10000100 001001001000000000000002 =

0100 0010 0001 0010 0100 0000 0000 00002 =

4 2 1 2 4 0 0 016

Answer: 4212400016

Example4: Floating point in Memory

Use the 32-bit floating representation to represent the following the

binary number and show how it will represented in the memory?

(26.75)10

Answer:

Convert the number from decimal to binary

2/18/2019

17

Floating Point Representation

(26.75) 10 = (11010.11)2

(11010.11) 2 =(1.101011 *24)2 Scientific notation

Exponent = 127+4=131

(131) 10 =(10000011) 2

0 10000011 10101100000000000000000

4 1 D 6 0 0 0 0

H.W

Lab 1 . P8,9

Q.5,6,7,9,11

